Iterative Lavrentiev regularization method under a heuristic rule for nonlinear ill-posed operator equations

نویسندگان

چکیده

In this paper, we consider the iterative Lavrentiev regularization method for obtaining a stable approximate solution nonlinear ill-posed operator equation $F(x)=y$, where $ F:D(F) \subset X \rightarrow X$ is monotone on Hilbert spaces $X$. order to obtain using methods, it important use suitable stopping rule terminate iterations at appropriate step. Recently, Qinian Jin and Wei Wang (2018) have proposed heuristic stop iteratively regularized Gauss-Newton method. The advantage of over existing priori posteriori rules that does not require accurate information noise level, which may be available or reliable in practical applications. propose an iterated method.We derive error estimates under nonlinearity conditions $F$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations

Recently, a new iterative method, called Newton-Lavrentiev Regularization (NLR) method, was considered by George (2006) for regularizing a nonlinear ill-posed Hammerstein-type operator equation in Hilbert spaces. In this paper we introduce a modified form of the NLR method and derive order optimal error bounds by choosing the regularization parameter according to the adaptive scheme considered ...

متن کامل

Iterated Lavrentiev Regularization for Nonlinear Ill-posed Problems

We consider an iterated form of Lavrentiev regularization, using a null sequence (αk) of positive real numbers to obtain a stable approximate solution for ill-posed nonlinear equations of the form F(x)= y, where F : D(F)⊆ X→ X is a nonlinear operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative regularization and generalized discrepancy principle for monotone operato...

متن کامل

An Application of Newton Type Iterative Method for Lavrentiev Regularization for Ill-Posed Equations: Finite Dimensional Realization

In this paper, we consider, a finite dimensional realization of Newton type iterative method for Lavrentiev regularization of ill-posed equations. Precisely we consider the ill-posed equation F (x) = f when the available data is f with ‖f − f‖ ≤ δ and the operator F : D(F ) ⊆ X → X is a nonlinear monotone operator defined on a real Hilbert space X . The error estimate obtained under a general s...

متن کامل

Iterative regularization methods for ill-posed Hammerstein-type operator equations in Hilbert scales

In this paper we report on a method for regularizing a nonlinear Hammerstein type operator equation in Hilbert scales. The proposed method is a combination of Lavrentieve regularization method and a Modified Newton’s method in Hilbert scales . Under the assumptions that the operator F is continuously differentiable with a Lipschitz-continuous first derivative and that the solution of (1.1) fulf...

متن کامل

Iterative Regularization Methods for Ill-Posed Hammerstein Type Operator Equation with Monotone Nonlinear Part

We considered a procedure for solving an ill-posed Hammerstein type operator equation KF (x) = y, by solving the linear equation Kz = y first for z and then solving the nonlinear equation F (x) = z. Convergence analysis is carried out by means of suitably constructed majorizing sequences. The derived error estimate using an adaptive method proposed by Perverzev and Schock (2005) in relation to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Transactions on Numerical Analysis

سال: 2023

ISSN: ['1068-9613', '1097-4067']

DOI: https://doi.org/10.1553/etna_vol58s450